of the twin, which move towards each other with increasing temperature and coalesce at 155 °C.

No thermal transformation has been detected in the acetates of rubidium and caesium between room temperature and the melting point.

All the crystallographic data are presented in Table 1.

The authors are grateful to Professor A. R. Ubbelohde, F.R.S. for his encouragement. One of us (JH) wishes to acknowledge the grant of an overseas scholarship by the State Government of Assam.

References

HAZLEWOOD, F. J., RHODES, E. & UBBELOHDE, A. R. (1966). Trans. Faraday Soc. 62, 3101.

PARRY, G. S., SCHUYFF, A. & UBBELOHDE, A. R. (1965). Proc. Roy. Soc. A285, 360.

Acta Cryst. (1972). B28, 3100

Gitterkonstanten von InNbO₄ und InTaO₄. Von J. LIEBERTZ, Institut für Kristallographie der Universität zu Köln, 5 Köln, Deutschland (BRD)

(Eingegangen am 28. Februar 1972 und wiedereingereicht am 12. Juli 1972)

The cell data of $InNbO_4$ and $InTaO_4$ have been determined. Both compounds are isostructural with wolf-ramite.

Zur Darstellung der Verbindungen InNbO₄ und InTaO₄ wurden die entsprechenden Oxide (reinst) sorgfältig gemischt und in lockerer Schüttung 48 Stunden an Luft bei 1100 °C gesintert. Die so erhaltenen Pulver sind rein weiss und völlig einphasig. Die Gitterkonstanten wurden aus Diffraktometer-Aufnahmen mit Cu-K α -Strahlung bestimmt.

Die indizierten Netzebenenabstände sind in Tabelle 1 aufgeführt. Hieraus errechnen sich die Gitterkonstanten zu:

InNbO₄	InTaO₄
$a = 4,843 \pm 0,002$ Å	$a = 4,833 \pm 0,002$ Å
$b = 5,773 \pm 0,002$	$b = 5,778 \pm 0,002$
$c = 5,147 \pm 0,002$	$c = 5,157 \pm 0,002$
$\beta = 91^{\circ}14'$	$\beta = 91^{\circ}23'$
$V = 143,87 \text{ Å}^3$	$V = 144,01 \text{ Å}^3$
Z = 2	Z = 2

Wie die Daten erkennen lassen, ist mit dem Übergang vom Niobat zum Tantalat eine geringe Verkleinerung von a und Vergrösserung von b und c verbunden, wobei das Volumen der Elementarzelle nahezu konstant bleibt.

Ein Vergleich mit den Gitterkonstanten von Wolframit und isotypen Verbindungen (Wyckoff, 1965) berechtigt zu der Annahme, dass InNbO₄ und InTaO₄ diesem Gittertyp angehören. Diese Vermutung wird bestärkt durch den ähnlichen Intensitätsverlauf bei den hier untersuchten Verbindungen einerseits und Verbindungen des Wolframit-Typs andererseits (vgl. z.B. ScNbO₄, ASTM-Karte Nr. 15–112, und CdWO₄, ASTM-Karte Nr. 13–514). Eine weitere Stütze ergibt sich daraus, dass *h*0/-Reflexe nur mit l=2n vorkommen, wie es die Raumgruppe des Wolframits C_{2h}^2-P2/c verlangt.

Verständlicherweise stimmt die Metrik am besten mit der von ScNbO₄ (a=4,808, b=5,668, c=5,102 Å, $\beta=$ 91°20'; V=139,00 Å³) und ScTaO₄ (Schröcke, 1960; Rooksby & White, 1963) überein. Entsprechend dem etwas grösseren Ionenradius von In³⁺ sind die Gitterkonstanten der Indium-Verbindungen leicht erhöht.

Tabelle 1. Netzebenenabstä	<i>ıde von</i> InNbO₄ <i>und</i> InTaO
----------------------------	--

	InNbO₄			InTaO₄	
d	I	hkl	d	I	hkl
4,849	4	100	5,782	5	010
3,844	5	011	4,836	8	100
3,711	52	110	3,854	9	011
3,031	100	11T	3,708	54	110
2,985	94	111	3,039	100	11T
2,888	22	020	2,986	90	111
2,574	31	002	2,889	21	020
2,517	29	021	2,580	32	002
2,421	18	200	2,523	36	021
2,244	9	12T	2,416	20	200
2,224	4	121	2,298	6	102
2,130	8	112	2,224	8	121
2,098	8	112	2,134	9	112
1,921	15	022	2,098	9	112
1,855	14	220	1,924	13	022
1,788	25	130	1,853	12	220
1,783	27	202	1,790	30	130
1,754	16	221	1,786	32	202
1,745	17	202	1,755	18	221
1,736	20	22 <u>1</u>	1,743	15	202
1,567	16	113	1,734	20	221
1,554	5	310	1,571	12	113
1,547	12	113	1,549	12	11 <u>3</u>
1,516	6	222	1,518	6	22 <u>2</u>
1,496	11	311	1,495	11	31T
1,493	11	222	1,492	12	222

Literatur

ROOKSBY, H. P. & WHITE, E. A. D. (1963). Acta Cryst. 16, 888.

SCHRÖCKE, H. (1960). Beitr. Mineral Petrogr. 7, 166.

WYCKOFF, R. W. G. (1965). Crystal Structures. 2nd Ed. Vol. 3, p. 41. New York, London, Sydney: Interscience.